
Recitation 14

December 3, 2015

Problems

Problem 1. Let v1 =


1
−2
1
0

 and v2 =


1
1
1
1

 be two vectors in R4. Find two vectors v3, v4 such that

{v1, v2, v3, v4} is an orthogonal basis of R4.

Solution. Firt of all notive that v1 · v2 = 0, so v1 and v2 are orthogonal. Let’s find all the vectors
orthogonal to v1, v2. These are all the vectors x = [x1, x2, x3, x4]T such that v1 · x = v2 · x = 0. But these
are linear equations, giving us the system{

x1 − 2x2 + x3 = 0

x1 + x2 + x3 + x4 = 0

The matrix of this homogeneous system is [
1 −2 1 0
1 1 1 1

]
Solving it (row reduction, etc.) gives that x3, x4 can be taken to be free variables, and x1 = −x3 − 2

3x4 and
x2 = 1

3x4. Thus a basis for the space of solutions is

u1 =


−1
0
1
0

 , and u2 =


−2
−1
0
3


Here we re-scaled one of the vectors to get rid of the fractions appearing. By the construction, u1 and u2
are orthogonal to the vectors v1, v2, but we are not done: u1 and u2 are not orthogonal, and so can’t be
taken to be v3, v4 we are looking for. So we need to do one more step: use Gramm-Schmidt (or whatever
you want) to orthogonalize u1, u2. Thus we put v3 = u1 and

v4 = u2 −
u2 · u1
u1 · u1

u1 =


−2
−1
0
3

− 2

2


−1
0
1
0

 =


−1
−1
−1
3


Very good. Now we have our vectors v1 . . . , v4:

v1 =


1
−2
1
0

 , v2 =


1
1
1
1

 , v3 =


−1
0
1
0

 , v4 =


−1
−1
−1
3


Problem 2. Find an SVD of the matrix

A =

[
2 0
0 −3

]

Solution. We just do what the doctor told us. First, ATA =

[
4 0
0 9

]
. It’s eigenvalues are λ1 = 9 and

λ2 = 4 (note the ordering!). So the singular values are σ1 = 3 and σ2 = 2. Now we find the corresponding
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eigenvectors of ATA. They are v1 = e2 =

[
0
1

]
and v2 = e1 =

[
1
0

]
(note the ordering and their length!). So

we know the matrix V for the SVD. Namely, V =

[
0 1
1 0

]
. To find vectors u1 and u2, we compute

u1 = 1
σ1
Av1 =

[
0
−1

]
and u2 = 1

σ2
Av2 =

[
1
0

]
. Thus U =

[
0 1
−1 0

]
, and we are done with the SVD:

A =

[
0 1
−1 0

] [
3 0
0 2

] [
0 1
1 0

]T

Problem 3. Find an SVD of the matrix

A =

3 −3
0 0
1 1


Solution. OK, we really just do the same thing, just following the algorithm. First, ATA =

[
10 −8
−8 10

]
.

The characteristic equation is λ2 − 20λ+ 36 = 0, and so λ1 = 18 and λ2 = 2 (notice the order!). So the

singular values are σ1 =
√

18 and σ2 =
√

2. The eigenvectors are v1 =

[
1/
√

2

−1/
√

2

]
and v2 =

[
1/
√

2

1/
√

2

]
respectively. Notice that here we normalized our vectors to make them have length 1. Thus we know the

matrix V =

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
. To find U , we get u1 = 1√

18
Av1 =

1
0
0

, and u2 = 1√
2
Av2 =

0
0
1

. Since U

should be a 3× 3 orthogonal matrix, and we only have two columns u1, u2, we need to find one more vector
u3 of length 1 which would be orthogonal to u1, u2. For that, you can either do the same thing as in

Problem 1, or just notice that u3 =

0
1
0

 will do the job (it’s easy to see here, since u1, u2 are just two

standard basis vectors). Thus, we are done with finding U , and hence with the SVD:

A =

1 0 0
0 0 1
0 1 0

3 −3
0 0
1 1

[ 1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]T

Problem 4. Find the pseudoinverse of the matrix A from Problem 3.

Solution. Since you didn’t cover this stuff on the lectures, it doesn’t matter.

Problem 5. Which of the following quadratic forms are positive-definite, negative-definite, or neither?
Which are semi-definite?

1. Q1(x) = 3x21 − 2x1x2 + x22 on R2;

2. Q2(x) = 3x21 − 2x1x2 + x22 on R3;

3. Q3(x) = 6x1x2 + 4x1x3 on R3;

4. Q4(x) = −x21 + 2x1x2 on R2.

Solution. The secret is: you find the matrix of the quadratic form, find its eigenvalues and look at their
signs. If all eigenvalues are positive (resp. negative) then the form is positive (resp. negative) definite. If
all eigenvalues are non-strictly positive (negative) then the form is positive (negative) semi-definite.
For Q1(x) = 3x21 − 2x1x2 + x22 on R2, the matrix is

A =

[
3 −1
−1 1

]
The characteristic equation is λ2 − 4λ+ 2 = 0, and so the eigenvalues are 2±

√
2, both strictly positive.

Thus Q1(x) = 3x21 − 2x1x2 + x22 on R2 is positive definite.
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If we consider Q1(x) = 3x21 − 2x1x2 + x22 on R3, the matrix is

A =

 3 −1 0
−1 1 0
0 0 0


and the eigenvalues are 0, 2 +

√
2, 2−

√
2, non-strictly positive. So Q is a positive semi-definite matrix.

The matrix of the form Q3(x) = 6x1x2 + 4x1x3 on R3 is

A =

0 3 2
3 0 0
2 0 0


and the characteristic equation is λ3 − 13λ = 0. Hence the eigenvalues are 0,

√
13,−

√
13. So this form is

neither positive nor negative (semi-)definite.

For Q4(x) = −x21 + 2x1x2 on R2, the matrix is

A =

[
−1 1
1 0

]
whose eigenvalues are 1±

√
5

2 , and so Q is again neither positive nor negative definite.

Problem 6. Let A = UΣV T be a SVD of an m× n matrix A.

Prove that if A is a square matrix, then |detA| is the product of singular values of A.

Prove that the columns of V are eigenvectors of ATA, and the columns of U are eigenvectors of AAT .

Solution. For any orthogonal matrix U , detU = ±1. Thus detA = detU · det Σ · detV T = ±det Σ.
Taking absolute values gives |detA| = |det Σ| = det Σ, where the last equality holds since all the singular
values by definition are non-negative.

If A = UΣV T , then ATAV = V ΣTΣV TV = V ΣTΣ because V TV = I by the definition of orthogonal
matrix V . Note also that ΣTΣ as a diagonal square matrix. Looking at i-th column, we get
ATAvi = σ2

i vi. That’s exactly what we wanted to get.
Similarly for AAT and columns of U .

Problem 7. Prove that for any m× n matrix A defining A : Rn → Rm, you can always find a basis of Rn
and a basis of Rm, relative to which the matrix A becomes

Σ′ =

[
I 0
0 0

]
where I is r× r identity matrix. In other words, you can always find n× n matrix P and m×m matrix Q
such that A = QΣ′P−1.

Solution. Let’s pick v1, . . . , vr ∈ Rm to be a basis of Col(A). We can complete it to a basis
v1, . . . , vr, vr+1, . . . , vm of the whole Rm. By definition of Col(A), there are some vectors u1, . . . , ur ∈ Rn
that are mapped to v1, . . . , vr, i.e. v1 = Au1, . . . , vr = Aur. They are linearly independent, since
Au1, . . . , Aur are. Let ur+1, . . . , un to be a basis of Nul(A). Note that u1, . . . , ur, ur+1, . . . , un is a basis of
Rn (think why!).
In this basis, A takes the required form. Check that this is indeed the case! You need to take ui’s, see
where they go under A, and find the weights of Aui in terms of v1, . . . , vn.
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